Voice and data convergence

Voice and data convergence
One of the recent data networking trends is called convergence. Convergence means that different signals such as voice, video, and data are transmitted over a single medium. On the consumer level, Web TV is an example of convergence; cable TV and the Internet are provided across a single cable. At the business level, many companies are migrating their voice long-distance traffic across their data networks.

Businesses have traditionally carried their voice and data traffic over separate networks. The phone companies assigned separate account managers to handle a business’ voice and data needs. The services had separate contracts and were billed separately. As part of the recent streamlining effort of the phone companies, voice and data services now share the same account manager, the same contract, and the same invoice. But the greater change is that voice and data now ride the same phone line.

Voice over frame relay
The main benefit of voice over frame relay (VoFR) is that long-distance calls are free. VoFR is normally only used to carry intracompany long-distance traffic or international long-distance traffic. The latency of packetswitching technology affects the call quality (i.e., conversations may be choppy).

Latency is a term that describes the transmission delay due to the speed of the media and the processing time of the network equipment, such as routers. Each stage in the network may only add milliseconds of delay, but the combined latency may be enough to distort the sound of the phone call. VoFR is, therefore, rarely used for “front office” applications. However, businesses with lots of intracompany long-distance calling can significantly reduce their long-distance billing. By moving their long distance across their frame relay network, they will eliminate the long-distance cost altogether. If they do not mind slightly compromising call quality, thousands of dollars can be saved.

Voice over Internet
Voice over Internet (VoIP) is the same concept as VoFR, except the voice calls are converted to data packets and sent along a network that uses Internet Protocol (IP). The Internet, or a private WAN using IP, are both examples of IP networks. The same latency problems previously described with VoFR apply with VoIP.

On a much smaller scale, cost savings can be achieved by using one of the Internet’s free long-distance Web sites such as http:// www.net2phone.com or http://www.dialpad.com. These services allow a person to make free long-distance calls over the Internet. Most of them limit the destination of the call to the United States, but a few of these services have roots in the Far East and may include Korea or Taiwan as approved calling destinations. Internet phone calls often experience a lot of noise, similar to a shortwave radio conversation, or international calls 5 or 10 years ago. The call quality is poor, but you cannot beat the price.

ATM is a high-speed packet-switching telecommunications service. ATM is typically used only by very large businesses such as Fortune 100 companies, major universities, and telephone companies. Telephone companies use ATM technology in the “backbone” of their networks. A voice phone call from New York to Tokyo will probably be converted to ATM packets as the data travels along an undersea phone line lying at the bottom of the ocean.

ATM is a high-cost service, designed for high-volume users, and will therefore not be used by most businesses. According to the Vertical Systems Group, only slightly more than 35,000 enterprises worldwide are currently using ATM services, while frame relay has more than 1.2 million subscribers.

Why is ATM so fast?
ATM carries voice, video, and data at speeds up to 622 Mbps. Such a high speed is due to three factors: asynchronous switching, cell length, and the use of hardware in switching. “Asynchronous” means the service transfers different data at different times and can process multiple jobs simultaneously.

ATM’s fixed-length packets, called cells, make ATM more efficient than other technologies, such as frame relay. The size of each frame relay packet must be processed, while ATM networks waste no time figuring out how large or small a packet is. ATM networks expect each packet to be 53-bytes long, and they rapidly move these packets up and down the network.

Another advantage of ATM over frame relay is that the switching is controlled in the network hardware, instead of the software. These three advantages make ATM a very fast data networking technology.

Although ATM may be a fast technology, it is also a costly one. Installing an ATM network is very expensive, and the monthly charges not only include fixed charges for the network, but also usage on an ATM network. ATM is only a cost-effective technology for extremely large businesses.

No comments: